
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 11 ,  571-585 (1990) 

ON THE QUALITY OF VISCOELASTIC FLOW 
SOLUTIONS: A N  ADAPTIVE REFINEMENT STUDY 

OF A NEWTONIAN A N D  A MAXWELL FLUID 

REKHA R. RAO AND BRUCE A. FINLAYSON 
Department of Chemical Engineering, The University of Washington, Seattle. Washington 98195, U.S.A. 

SUMMARY 
Little adaptive finite element work has been done in the area of viscoelastic flow in complex geometries. In 
this paper an adaptive finite element mesh refinement study is carried out on a Newtonian fluid and a 
Maxwell fluid in an axisymmetric 4: 1 contraction. The error indicator used for the refinement is the local 
norm of the residual in an element. For the Newtonian fluid, steady improvement with refinement is seen, 
though this is not the case for the Maxwell fluid, which never achieves a solution of good quality. 
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INTRODUCTION 

In recent years, as numerical methods have become more widely used for solving most types of 
differential equations, interest has grown in methods which can be made to conform or ‘adapt’ to 
the problem of interest. Adaptive strategies can be applied to almost any numerical method (finite 
difference, finite element, collocation or even the choice of integration packages) and generally 
involve using an initial solution obtained to re-solve the problem in order to achieve a better 
solution. The advantages of adaptation are obvious: a better solution is obtained for the same 
computing cost and an inexperienced user can now obtain results similar to those of an 
experienced user. 

Applying this methodology to the finite element method involves calculating the approximate 
solution to the set of differential equations and boundary conditions of interest on an initial coarse 
mesh and from this calculating some type of a posteriori error indicator. The interpolation of the 
exact solution is then improved by one of several adaptive techniques, which include adaptive 
remeshing, adaptive node movement and adaptive refinement. Two types of adaptive refinement 
exist: p-enrichment involves raising the order of the polynomials used to interpolate the solution 
while h-enrichment involves decreasing the element size. A more detailed discussion of these 
adaptation schemes is included below, along with a general discussion of error indicators and 
estimators. The final section of the introduction discusses the work which has already been carried 
out on the application of adaptive finite element analysis to viscoelastic (VE) flow problems. 

Remeshing 

Application of adaptive remeshing involves producing a new mesh at each iteration or time step 
based on the error indicators from the previous solution. This technique is not that widely used, 
since producing a new mesh at every stage of the calculation and interpolating the previous 
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solution onto the new mesh are very expensive processes. However, the convergence properties of 
this method are good, since the performance of the finite element method depends greatly on the 
choice of mesh. 

This method is particularly applicable to problems in one dimension' where grid regeneration is 
relatively cheap, problems containing one-dimensional features such as shocks, and problems 
with wavefronts where the position of greatest change in the solution moves with time. Almost any 
grid generation program, for either triangular or quadrilateral elements, which contains an 
element or node density function can be converted into an adaptive remeshing scheme: all that 
needs to be done is to relate the error indicator to the density function.2 The error indicator is 
calculated on an initial non-optimal mesh (a uniform grid is often utilized) and a new mesh is 
produced based on the new density function. The previous solution is then interpolated onto the 
new mesh. Explicit node or element density functions are most often found for mapping-based 
mesh generation programs. 

For unstructured grid generation programs which contain no explicit density function, other 
techniques can be used. Frey3 calculates a solution on an initial coarse triangular mesh, adds a 
node to the centre of all elements where the error indicators are high, and then retriangulates on 
the basis of this new nodal structure. Peraire et aL4 calculate an element size as each element is 
formed and therefore do not need a global density function. Much success has been demonstrated 
when this method was used in conjunction with h- or  refinement.^ This method has also been 
used together, with r-type adaptation for problems with moving boundaries.6 

Mesh movement 

Mesh movement or r-type adaptation is the method which has been used the longest of all 
adaptive techniques, beginning in the early 1970s with the work of O l i~e i r a .~  This method is 
severely limited by the choice of initial mesh. Node relocation will probably improve the quality of 
the solution, but optimization of the mesh is easier to achieve with one of the other adaptive 
strategies which add degrees of freedom. The essence of this method consists of moving nodes 
while maintaining the same element connectivity in order to satisfy certain criteria: either to 
equidistribute the value of the error indicator or to adapt according to the domain for moving 
boundary problems. The former is generally achieved using a weighted smoothing related to the 
error criteria to move the nodes in the necessary direction to smooth the error: conditions to 
ensure near-orthogonality can also be included. Other constraints must be applied to insure that 
there is no mesh tangling or node crossing. For cases with singularities the nodes tend to pile up at 
the singularity (where the error is usually greatest); this must be prevented as well. Moving 
boundary problems use the insights into the physics of the problem provided by the solution to 
reposition the nodes. 

One advantage of node relocation is that the number of degrees of freedom remains unchanged 
while the solution is improved. This method is also less expensive than remeshing, since all that 
need to be recalculated are the new nodal positions. This method is particularly suited to time- 
dependent problems, where the domain of interest is changing, and shape optimization.* It is also 
useful for problems where the position of steepness of the solution changes with time, such as 
problems with shocks or wave front^.^ For these types of problems it is not necessary to increase 
the number of degrees of freedom used, but it is important to have good resolution of the solution 
in regions of steep gradients. For a review of node redistribution see Eiseman." 

Mesh refinement 

Element refinement consists of increasing the number of degrees of freedom used in regions 
where the resolution of the solution is inadequate as demonstrated by the value of the error 
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indicators. Two methods are commonly used in order to achieve this end: h-enrichment involves 
physically refining elements, while p-enrichment involves raising the order of the finite element 
trial function used to interpolate the solution without changing the physical mesh. The 
development of h-version refinement has been credited to Babuika,’ while p-version refinement 
has been associated with Szabo and Mehta.” Both these methods are dependent on the choice of 
initial mesh and it has been demonstrated by Babuika and Szabo’ ’ that judicious use of the two 
methods together produces optimum convergence rates. This has been termed a ‘pony express’ 
p01icy.’~ h-Refinement methods tend to be easier to apply since they can be added to existing finite 
element codes with only minor modifications and for this reason seem to have been more widely 
used in the past than their p-type counterparts, though p-refinement has demonstrated superior 
convergence for a wide number of problems.12~14~’S 

Finite elements are usually at least Co-continuous, meaning that the solution is continuous 
across element boundaries (C’-continuity would mean that both the solution and the first 
derivative of the solution are continuous across element boundaries). This continuity is ensured by 
the fact that all the nodes on element sides are shared by their side neighbours. Nodes on element 
boundaries which are not shared by their side neighbours will be termed ‘non-conforming nodes’ 
in the discussion below. 

h-Enrichment 

This method, involving the subdivision of elements, can be applied with great flexibility to either 
triangular or quadrilateral elements, and a wide number of different refinement techniques can be 
applied to either element type. 

The refinement of triangular elements can generally be accomplished without creating any non- 
conforming nodes, because of the unstructured nature of triangular meshes. If a new node is 
created from an element side, then the node must also be used by its neighbour on that side. In 
other words, this element must be refined too, though the refinement need not be as severe. For 
instance, if we quadrasect an element flagged for refinement, we need only bisect its neighbour 
containing the non-conforming node. Actual physical refinement can be carried out in a number of 
ways: some like to bisect the longest side of an element to create two elements out of a parent 
element,I6 while others choose to maintain aspect ratios by creating four new elements from a 
parent element by bisecting each side and having an embedded centre element with vertices at the 
 bisection^.'^ The former technique can produce elements with degraded aspect ratios unless some 
type of smoothing is used, at an added cost, while the latter technique can produce vast 
differentials in element size which can have associated  problem^.^ It is also possible to refine a 
triangular element by subdividing it into three quadrilateral elements.I8 

For structured quadrilateral meshes, refinement is often more difficult. If one quadrilateral 
parent element is subdivided into four elements based on side bisection, non-conforming nodes are 
produced on each side. Several methods have been used to deal with these nodes. Most commonly, 
the nodes are left as non-conforming and constraints are used to ensure that the solution will be 
continuous. These constraints can be handled at the elemental level oia static condensation or 
globally using Lagrange multipliers or static condensation. I g  However, constraint equations do 
add to the computing costs of the solution and the complexity of the program. 

For this reason it is often advantageous to refine elements containing non-conforming nodes 
and eliminate the need for constrained nodes. This will increase not only the degrees of freedom 
used and the computing costs, but also, sometimes, the accuracy of the solution. Kikuchi’ uses 
triangular elements in conjunction with quadrilateral ones to eliminate non-conforming nodes: if 
the elements next to the subdivided parent element contain non-conforming nodes, the neighbour 
is split into three triangular elements all sharing the now conforming node. No new non- 
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conforming nodes are produced in the second subdivision. Marchal et a1.” have compared 
additional refinement with triangles and constraining non-conforming nodes, and report that 
constraints worked better for their problems. 

Criteria for adaptation 

In all of the references discussed above, some type of error indicator was used in order to guide 
the finite element program to adapt the mesh correctly. This can also be termed a criterion for 
adaptation and it always has a local character. An error indicator is usually a projection of where 
more degrees of freedom should be placed in order to reduce the error by the greatest amount. An 
optimal mesh will have equidistributed errors. This can be accomplished by extrapolating the 
change in error from the previous solution to the present one,21 or more complex methods can be 
used to estimate the change in error by relating the stiffness matrices and right-hand side of the 
previous and future solutions.22 A vast number of different indicators have been used successfully, 
some of which take into account the error in all degrees of freedom and others which only 
determine the error for one scalar variable. Early workers in the field, such as Oliveira7 and Turke 
and McneiceZ3 use an error indicator related to the variational principle of the problems they are 
solving.24 Since they are minimizing the scalar functional F ,  they choose as a natural error 
indicator the change in F with nodal location, dF/dx. In the limit as F becomes a true minimum, 
dF/dx will go to zero. Therefore the magnitude of this quantity seems an apt criterion for 
adaptation: if dF/dx is large, the mesh will not be good. 

For problems in linear elasticity the errors in the strain energy and the potential energy have 
been very popular error indicators,12*22 since minimization of these quantities implies an 
optimum mesh in a similar manner to the above since they are related to the functionals being 
minimized. For compressible flow problems the smoothness of the density can be used as the 
indicator4.” and for incompressible flow other gradients of scalars can be used such as 
temperature or concentration.26 Norms of velocity or pressure gradients may be used as well. The 
residual of the discretized differential equations has also been used,” as has the energy norm of the 
error. These quantities have been shown to be related for various problems.’ 1 . 2 8 * 2 9  

Criteria for ending calculations 

Much work has been done in recent times in the area of obtaining good a posteriori error estimates 
for the finite element method. For problems which have been well studied, such as linear elliptic 
problems3’ and linear parabolic  problem^,^'.^^ there exist advanced methods of estimating the 
error. For non-linear problems, less work has been done and good a posteriori error estimates are 
not yet a~ai lable . ’~ However, workers such as Zienkiewicz and BabuSka have been implying that 
good non-linear error estimators are on their way.2 1 .22  

Error estimators can be either local or global: a local error estimate can be used as an error 
indicator and transformed into a global error by summing over all the elements. The reliability of 
the error estimator can be demonstrated using an effectivity index 

where E is the error estimate and e is the true error. We can have either upper or lower estimators. 
The estimator will be asymptotically correct if 
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In fact, BabuSka and Rheinboldt’l have shown that for some problems the error estimator only 
gives reliable estimates in this limit. Before this the mesh is non-optimal: its error is not 
equilibrated and the error estimator is not efficient. 

For problems where no good error estimate is available, the amount of computer time used or 
memory requirements are good criteria for stopping calculations. The quality of the solution, as 
judged by the engineer, can be another stopping criterion. Also, if the error indicators have 
stopped changing, the calculation can be discontinued. In these cases the user does know when to 
discontinue the adaptive cycle, but he has not gotten as much information about the solution as he 
would have if an appropriate error estimator had been available. 

Application of adaptive finite element analysis to viscoelastic frow problems 

Little adaptive work has been done in the field of non-Newtonian fluid mechanics since most 
workers have been concerned with the ‘high-Weissenberg-number problem’,20* 33 which describes 
the convergence failure of the numerical scheme as the amount of elasticity in the fluid is increased. 
Marchal et aLzo study the flow of a Maxwell fluid around a sphere and use the positive definiteness 
of the finger strain tensor as their criterion for refinement. The mesh consists of quadrilateral 
elements and they refine in the manner discussed above, using constrained nodes. These workers 
were trying to increase the critical Weissenberg number with this method they were unsuccessful. 
They did demonstrate an improvement in the solution away from the stagnation point with 
refinement. However, near the stagnation point the solution seemed to deteriorate upon 
refinement. 

Brown et al.33 study the flow of a Maxwell fluid through an abrupt 4: 1 contraction. They refine 
in the same way as Marchal et al.,” but since they have no error indicator, they manually refine 
elements. They demonstrate that the critical Weissenberg number decreases with adaptive 
refinement and that convergence for any Weissenberg number becomes more difficult as the 
refinement near the singularity is increased. 

Pursuing knowledge in the field of adaptive finite element analysis is important because it can 
become a very powerful technique for efficient problem solving for viscoelastic flow once the ‘high- 
Weissenberg-number problem’ has been alleviated. In this spirit an investigation is made into the 
differences between adaptive h-enrichment for a Newtonian fluid and a viscoelastic fluid, both in 
an abrupt cylindrical 4: 1 contraction. 

EQUATIONS AND METHOD 

Equations 

are the Cauchy momentum equation 
The dimensionless equations describing the steady flow of an upper-convected Maxwell fluid 

the continuity equation 

v . u = o  (4) 

and the constitutive equation 
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where 

u v = o  = 2 (1 - r ’ 116) 
r 
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$ \  , u = v = o  
/ 
/ 4 p = o  

iD//////////J 
u=32(1-r2) 
v = o  

j = vu + VUT, 
] i = [ f j : j ] ” ’ ,  

ql, = u * Vr - VuT* r - r * VU. 
The dimensionless parameters are 

where p is the density, ( u )  is the average velocity upstream, R is the downstream radius, 1 is the 
time constant, Re is a Reynolds number and W e  is a Weissenberg number. The Weissenberg 
number is a dimensionless elastic time constant. Another dimensionless parameter of interest is 
the recoverable shear (SR), which is defined as 

S,= W e j w ,  (10) 

where vw is evaluated at the downstream wall at the exit. The boundary conditions used for the 
cylindrical 4: 1 contraction problem are fully developed flow upstream and downstream from the 
contraction, symmetry about the centreline and no slip at the solid boundary. Fully developed 
values of the stress fields are also specified at the inlet: 

zrr=O, 7rz= -~j, ~ , , = 2 W e j ’ ,  trr=T,,. (1 1) 

The pressure is specified at one point since the pressure field is indeterminate to a constant; here 
the downstream wall is used. All boundary conditions are shown in Figure 1. 

Galerkin jinite element method 

finite element method. The velocity fields are interpolated with biquadratic trial functions, 
The above equations and boundary conditions are discretized and solved with the Galerkin 

n 
u= 1 uiNi(r, z), 

u= 1 uiNi(r, z),  

i =  1 

n 

i = l  
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while the pressure and. stress fields are represented by bilinear trial functions, 
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where the subscript q denotes either the rr-, zz-, or rz-component of the stress tensor or the trace. 
The discretization of the domain is carried out with Lagrangian triangular elements. 

The constitutive equation (5) is first substituted into the momentum equation (3) to obtain 

Re u * Vu = - Vp - V - i)+ We V - T ( ~ , .  (16) 

Next, the trial functions are substituted into equations (16), (4) and (5) in place of the continuous 
solution. The equations are then weighted with the shape functions themselves, and the divergence 
of the stress and pressure in equation (16) are integrated by parts. The Galerkin method pro- 
duces a set of non-linear algebraic equations which are then linearized and solved with a 
Newton-Raphson method. 

The residual 

The local L,-norm of the residual of the discretized differential equations is used as the basis of 
the adaptive refinement procedure. Consider first a linear problem written in a generalized form 

Lu = f, (17) 

where L is the differential operator, u is the exact solution vector and f is the right-hand side of the 
equations. If the approximate solution is substituted for the continuous solution, an expression for 
the residual is obtained. 

r = Lu, -f, (18) 
where r denotes the residual and tih is the approximate solution vector. Combining equations (17) 
and (18) gives an expression relating the residual and the error: 

r = L(u, - u) = L(e). (19) 
If u h  were the exact solution, then the the residual would be zero. Thus the residual gives some 
measure as to how well the differential equations are satisfied. In some cases, when an appropriate 
Green's function is available and bounded, or a minimum or maximum variational principle is 
available, equation (19) can be inverted and the error can be related directly to the residual. 
Formally this is expressed as 

e=L-lr, (20) 

1 1 ~ 1 1 ~ 1 1 ~ - 1 ~ 1 1 ~  IIL-'II IIrll. (21) 
For non-linear partial differential equations such bounds are rarely available, though the use of 

the residual to assess the quality of the solution is still a possible option. The use of the residual as 
an error indicator is largely empirical for the non-linear differential equations and complex 
boundary conditions governing viscoelastic flow. However, we have demonstrated previously that 
the behaviour of the residual is related to the quality of the solution.34 
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Once a solution is found, the residual of each differential equation is calculated on an element. 
We define an element residual Ire\ as 

where rei denotes the residual of one of the seven equations in an element (two momentum, three 
stress, continuity and trace stress) and dR denotes an integral over the entire area. This form of the 
norm is chosen since there are seven residuals of interest which all need representation; however, 
the residuals of the momentum equations are generally the largest and thus dominate 
equation (22). We also calculate an average residual over all elements, 

and a maximum over all elements, 

maximum residual = max I re I. 
l S e S N E  

These quantities are used in the actual adaptation. For each solution, however, we also calculate 
the norm of the residual for each equation i: 

7, t‘ 

Figure 2. Initial axisymmetric 4: 1 contraction mesh for the adaptive refinement study 



ON THE QUALITY OF VISCOELASTIC FLOW SOLUTIONS 579 

Adaptive refinement 

The adaptive analysis begins with calculation of the solution on the initial coarse mesh which is 
given in Figure 2. Once a convergent solution is achieved, the norm of the residual is calculated in 
each element. The average value of the norm over all elements is then calculated. Elements having 
residuals greater than twice the average are flagged for refinement. The flagged elements are then 
bisected along their longest side to form two new triangular elements from one parent element. As 
the mesh is adapted, the previous solution is interpolated onto any new nodes formed, providing a 
good starting guess for the Newton-Raphson iteration of the next stage of adaptation. 

After all the necessary elements have been refined, Gaussian smoothing is applied, which places 
each node at the centroid of a polygon formed by its neighbours. This tends to form elements 
which are shaped more closely to equilateral triangles. Finally, an element reordering scheme is 
applied in order to minimize the element front and solve the problem as efficiently as 
possible. 

The adaptation process is continued three times in turn, at which point it is terminated owing to 
excessive computer time. It is interesting to note that once a larger computer was available for 
calculations another refinement stage was attempted. Four refinement stages were achievable for 
the Newtonian fluid, while the Maxwell fluid did not have a convergent solution after four 
refinements. The solution to the Newtonian problem converged in one iteration, while the 
Maxwell fluid solution took four iterations to converge. The time it takes to physically refine the 
mesh is less than one-tenth of the time for one iteration. 

Contour plotting 

Contour plots are produced from an existing finite element mesh of triangles by subdividing the 
triangular element into six smaller triangles and then drawing straight-line contours across these 
subdivisions. The values of the contours plotted are chosen on the basis of the field values on the 
initial mesh. First, the maximum and minimum values of the field being plotted are determined on 
the initial mesh. Next, 10 evenly spaced contour values are calculated between the maximum and 
minimum values. These contour values are also used for the contour plots of the more refined 
meshes for ease of comparison. 

RESULTS 

An adaptive refinement study was carried out for both a Newtonian and a non-Newtonian fluid in 
Stokes flow (Re=O) in a cylindrical 4: 1 contraction. The Maxwell model constitutive relation 
given in equation (9, with an S ,  of 1.28, was used to represent the viscoelastic behaviour of the 
fluid. Figure 3 demonstrates how the mesh changes as a function of refinement for the Newtonian 
fluid. Figure 4 contains similar representations for the Maxwell fluid. For both fluids, most of the 
refinement occurs near the re-entrant corner. This is as we would expect since there is a singularity 
in the solution there. One difference between the fluids as we refine the meshes is that the mesh for 
the Newtonian fluid becomes more refined at the centreline near the plane of contraction than the 
viscoelastic fluid’s mesh. For the viscoelastic fluid the singularity at the re-entrant corner 
dominates the refinement process. 

Let us first examine how the solution changes with adaptation for the Newtonian fluid. Figure 5 
contains contour plots of the rr-stress for the initial and final adaptive refinement stages; these are 
plotted with the same contour values for ease of comparison. The rr-stress on the initial mesh is 
plagued by large jagged contours which will be referred to as oscillations. The solution improves 
at each refinement stage. On the final refinement the solution looks quite good: most of the 
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Figure 3. Corner detail of the adaptive meshes as a 
function of refinement for the Newtonian fluid ( O 6 r  6 2 ,  
- 8 C z C 8): (a) first refinement; (b) second refinement; 

(c) third refinement 

Figure 4. Corner detail of the adaptive meshes as a 
function of refinement for the Maxwell fluid ( 0 6 r C 2 ,  
- 8 6 z 6 8): (a) first refinement; (b) second refinement; 

(c) third refinement 

oscillations are gone and the distance between contours has decreased, implying better resolution 
of the stress near the singularity. 

Figure 6 contains contour plots of the rz-stress for the Newtonian fluid as a function of 
refinement. These plots also demonstrate improvement upon refinement, though not as dramat- 
ically as the plots of the rr-stress. The quality of the solution increases as we refine the mesh and 
more details of the solution are represented. The solution generally becomes smoother as well. Are 
the results we obtain for the Maxwell fluid similar to those obtained for the Newtonian fluid? 
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Figure 5. Corner detail of the rr-stress for a Newtonian fluid on the initial and most refined mesh (Ogr g2 ,  -8  g z 9 8 )  
(contour values: -37.3, -31.8, -26.3, -20.9, - 15.4, - 10.0, -4.4, 1.1, 6.6, 12.1): (a) initial mesh; (b) third refinement 

Figure 6. Corner detail of the rz-stress for a Newtonian fluid on the initial and most refined mesh (0 Q r Q 2, - 8 9 z < 8) 
(contour values: - 15.0, -6.0, 3.0, 12.0, 21.0, 30.1, 39.1,48.1, 57.1, 66.1): (a) initial mesh; (b) third refinement 

Figure 7 contains plots of the rr-stress on the initial and final mesh for the Maxwell fluid. The 
rr-stress on the initial mesh contains both large and small oscillations. For the final adaptation 
stage the solution near the singularity is greatly improved but the unattractive oscillations near 
the plane of contraction persist. We are seeing an interesting trend: the solution is improving in 
some regions while in other regions spurious wiggles and erroneous stress islands are appearing. 

On viewing Figure 8, which has contour plots of the rz-stress for the initial mesh and the final 
adapted mesh, we can see the same trends as for the rr-stress. The solution on the initial mesh lacks 
detail. This problem is corrected as we refine the mesh, as demonstrated by the fact that the 
contours are closer together; however, there are still breaks in the curves. For both components of 
the solution for the Maxwell fluid, the rr-stress and the rz-stress, the solution improves initially, 
but then levels off with subsequent adaptation and no further improvement is observed. 

We can get more insight into the effects of the singularity on the solution if we look at slices of 
the solution, for both fluids, taken at the horizontal and vertical planes of the contraction. Figure 9 
shows the effect of refinement on the zz-stress on the line I= 1 from - 5 -= z < 5. The Newtonian 
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Figure 7. Corner detail of the rr-stress for a Maxwell fluid on the initial and most refined mesh (O<r<2, - 8 6 2 6 8 )  
(contour values: -36.1, -30.9, -25.7, -20.5, -15.2, -100, -4.8, 0.4, 5.7, 10.9): (a) initial mesh; (b) third refinement 

, -, 

Figure 8. Corner detail of the rz-stress for a Maxwell fluid on the initial and most refined mesh (O<r<2, - 8 6 ~ 6 8 )  
(contour values: - 12.7, -2.4, 8.0, 18.3, 28.7, 39.0, 49.4, 59.7, 70.0, 80.4): (a) initial mesh; (b) third refinement 

fluid on the initial mesh has a wide diffuse peak at the singularity and is zero elsewhere, except for a 
small oscillation. As the mesh is refined, the peak at the singularity becomes larger and sharper 
and the oscillation becomes smaller. The viscoelastic solution on the initial mesh totally misses the 
singularity at the reentrant corner. After three refinement stages a small sharp peak at the 
singularity is achieved. If we look at the zz-stress solution on the line z = 0,O c r < 2 (Figure lo), we 
can see that similar trends are followed; however, the results at this slice are less impressive. The 
Newtonian solution on the initial mesh is relatively smooth and contains a wide peak at the re- 
entrant corner. As the mesh is refined, the peak at the corner sharpens but the solution elsewhere 
becomes less smooth. For the Maxwell fluid on the initial mesh the solution begins with a few large 
oscillations and a peak slightly below the singularity. After three refinement stages the peak for the 
singularity has moved closer to the re-entrant corner but now has a snubbed appearance and the 
oscillations have become more pronounced in the inlet to the small tube. For the Newtonian fluid 
we have seen a general improvement at each refinement stage. The solution on the final mesh 
seems to indicate that further refinement is necessary. For the Maxwell fluid there is some 



ON THE QUALITY OF VISCOELASTIC FLOW SOLUTIONS 583 

0. - n 

-50. - 
4- LnitialMesh - 

rl 1 -100. 

ir -150. 

B 

-200. . 4- 3rdRefmancni 

a) -250.-k 4. -9. -2. -i. 6. i. i. 3. 4. 

I 3rd Refmemen1 I 

b) 
5. 

4- 3rdRcfincmnI 
0. . 

4- 3 r d R d i m n t  

-100. - 

05 1. 1.5 
8)  -150.0. 

Figure 9. zz-Stress ( 1 ,  z) (- 5 < z Q 5) at the horizontal plane of the contraction for both fluids as a function of refinement: 
(a) Newtonian fluid; (b) Maxwell fluid 
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Figure 10. zz-Stress (r ,O) (OGrG2) at the vertical plane of the contraction for both fluids as a function of refinement: 
(a) Newtonian fluid; (b) Maxwell fluid 

Table I. Refinement information 

Average Maximum r-Momentum z-Momentum 
Fluid' Stage Unknowns Nodes Elements residualb residual' residuald residuald 

N 
N 
N 
N 
M 
M 
M 
M 

0 1624 482 
1 1973 589 
2 2463 739 
3 3172 956 
0 1624 482 
1 1973 589 
2 2515 354 
3 3046 435 

219 
272 
346 
453 
219 
272 
354 
435 

7.4 
6.8 
6.7 
5.0 
7.9 
7.0 
7.3 
7.1 

158.7 
74.7 
96.5 
97.2 

i44-3 
91.2 

163.1 
229.7 

119.4 227.6 
136.0 197.0 
160.6 253.1 
180.1 202.2 
174.3 199.8 
184.5 183.0 
280.4 2 16.0 
331.1 218.8 

' N, Newtonian, M, Maxwell 
Equation (23) 
Equation (24) 
Equation (25) for I = 1, 2. 

improvement with refinement but, in part, the solution actually seems to degrade with refinement. 
Evidence of this would be the fact that the solution on the fourth refinement of the mesh did not 
converge. 

The trends we see for both fluids are reflected in the error indicator used, the norm of the 
residual. Table I contains refinement information for both fluids. It gives statistics on the number 
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of unknowns, nodes and elements for each mesh, as well as the average, maximum and total r- and 
z-momentum residuals for each equation on every mesh. For the Newtonian fluid the average of 
the norm of the residual in an element decreases as the mesh is adaptively refined. The maximum 
norm is also roughly decreasing. For the Maxwell fluid the average residual in an element 
decreases slightly initially and then levels off, but essentially stays constant. The maximum 
residual decreases for the first refinement stage and increases for subsequent stages. The norms of 
the residuals behave similarly; uniform convergence is not yet observed for this difficult problem. 
The residuals are calculated only at the quadrature points, so that as the mesh is refined there is 
actually additional detail provided for the calculation of the norm. Thus some of the results from 
the norm may be due to quadrature error. 

An adaptive refinement study was also carried out at a higher value of the recoverable shear, 
S,=3.84. For this fluid, only one refinement stage was possible, at which time the Newton- 
Raphson failed to converge. This result agrees with Brown et An explicitly elliptic form of the 
momentum equation,36 which eliminates the destructive coupling between the stress and 
momentum equations, has been used to extend the S,-limit. These results will be presented 
elsewhere. 

CONCLUSIONS 

Improvement can be seen as the mesh is adapted for the Newtonian fluid and this fact is also 
reflected in the error indicator which decreases with refinement. Once there is a small amount of 
elasticity in the fluid, using a Maxwell model, the quality of the solution decays dramatically and 
we no longer see steady improvement with adaptive refinement. At the final refinement stage a 
good-quality solution has not yet been achieved. This trend is also reflected in the residual which 
stays relatively constant with refinement. 
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2. 

3. 

4. 

5. 

6. 
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